BASI DI MEDICINA MOLECOLARE

CORSO APEO: "Corso di Benessere, Make-up e Inestetismi da Terapia""

D.ssa Ambra Redaelli

SOMMARIO

- 1. Introduzione
- 2. Il tumore
- 3. La cellula
- 4. DNA
- 5. RNA
- 6. Il ciclo cellulare

1. INTRODUZIONE

Obiettivo del corso:

- Formare le estetiste sulla malattia oncologica per permetterle di trattare, in sicurezza, la persona in terapia oncologica.
- Conoscere la tossicità cutanea delle terapie oncologiche, per mantenere alla pelle le migliori condizioni e permettere al paziente oncologico di avere una migliore qualità di vita.

L'intervento estetico **competente e professionale** può aiutare la persona in terapia oncologica ad affrontare con una pelle più sana la terapia oncologica e con uno spirito diverso tutto il percorso oncologico

INTRODUZIONE

Per comprendere le caratteristiche della pelle nella persona in terapia oncologica ossia, la tossicità cutanea da farmaci antitumorali e radioterapia bisogna conoscere:

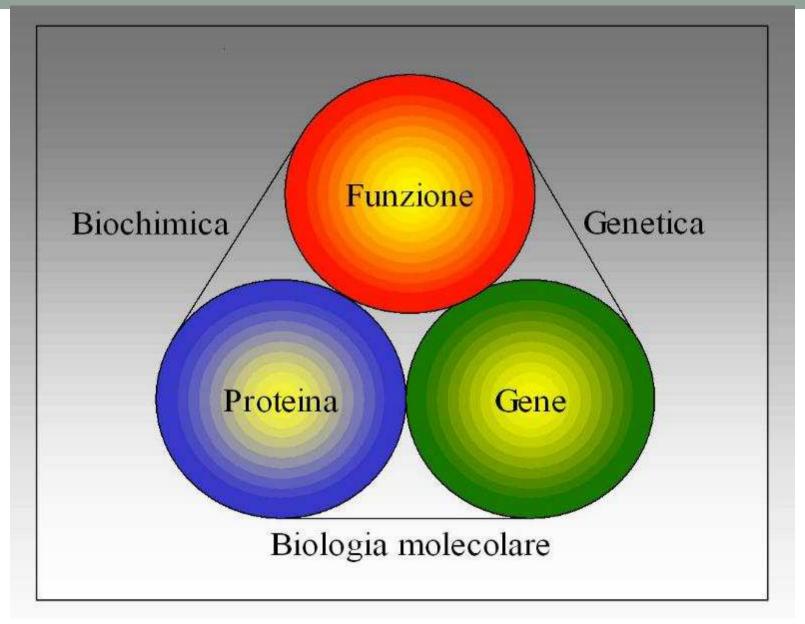
- il tumore: come nasce come si manifesta, quali sono le trasformazioni della cellula tumorale
- le terapie mediche e radioterapiche: dove e come agiscono e loro tossicità cutanea
- i cambiamenti della fisiologia ed anatomia cutanea, le lesioni cutanee: caratteristiche visive e tattili e differenze con le più comuni patologie cutanee

2. CHE COS'È IL TUMORE

- Il tumore o neoplasia o cancro, è un insieme di oltre 200 malattie caratterizzate da un'alterata crescita cellulare, che elude tutti i meccanismi di controllo di cui l'organismo sano dispone.
- L'alterazione della crescita è dovuta ad un accumulo di mutazioni genetiche (alterazioni dei geni) responsabili della crescita e della sopravvivenza cellulare, dell'adesione e della mobilità delle cellule
- La cellula impazzisce, perde alcune funzioni, ne acquisisce delle altre e si moltiplica senza controllo

CHE COS'È IL TUMORE

- Carcinogenesi: mutazione del DNA e quindi della cellula
- Proliferazione incontrollata e ulteriori modificazioni
- Masse ed aggregati cellulari che interferiscono con le normali funzioni dell'organo
- Metastasi: migrazione cellulare neoplastiche verso organi distanti


CHE COS'È IL TUMORE

- I tempi di sviluppo del tumore dal suo inizio biologico alla manifestazione, sono diversi ed è combattuto dal sistema immunitario e dai sistemi di riparazione del genoma
- Lo sviluppo può portare a:
- lesioni benigne, non aggressive e localizzate
- **lesioni maligne**, aggrediscono le strutture vicine, le distruggono e migrano in tessuti ed organi lontani

IL PERCORSO CONOSCITIVO

- Per comprendere le mutazioni neoplastiche della cellula dobbiamo prima conoscere la cellula sana, la sua anatomia, fisiologia, biochimica, la biologia molecolare e quindi l'oncologia molecolare.
- Anatomia e fisiologia: come è fatta e come funziona la cellula
- <u>Biochimica cellulare</u>: struttura e trasformazioni dei componenti cellulari
- <u>Biologia molecolare</u>: studia i meccanismi molecolari alla base della vita: replicazione, trascrizione e traduzione e del DNA e proteine
- Oncologia molecolare: Variazioni oncologiche dei meccanismi molecolari

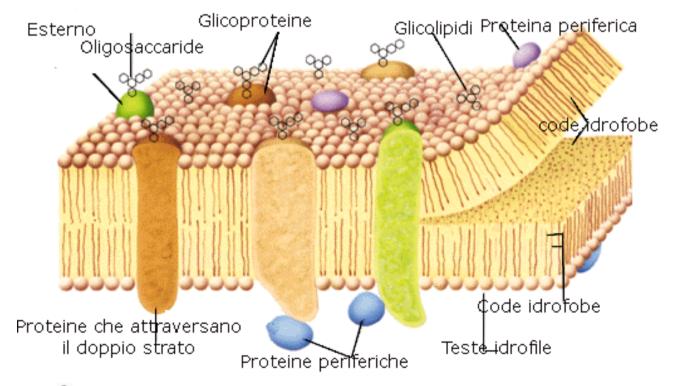
WIKIPEDIA - Biologia molecolare

3. LA CELLULA: STRUTTURA E FISIOLOGIA

- La cellula è la più piccola unità vivente capace di vita propria se messa nelle condizioni di poter ricevere nutrimento, ossigeno ed eliminare sostanze prodotte dal lavoro metabolico.
- La cellula è composta da:
- Membrana citoplasmatica
- Citoplasma con organuli
- Nucleo

LA CELLULA

CELLULA: FUNZIONI

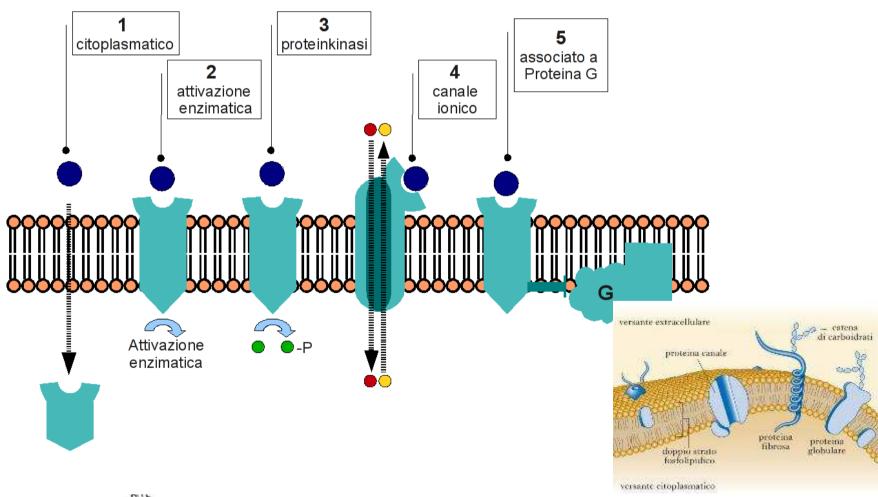

- La cellula attraverso il suo lavoro metabolico dà origine, costruisce e mantiene i tessuti e gli organi di cui fa parte.
- Svolge un **lavoro INTERNO** per mantenere sè stessa in equilibrio strutturale (autoriparazione) ed in equilibrio energetico (produzione di ATP)
- Svolge un lavoro ESTERNO: produzione di proteine che compongono organi e tessuti e ne permettono il funzionamento

CELLULA: FUNZIONI

- È un **sistema dinamico autoregolato**, dotato di sistemi di segnalazione intra e inter cellulare che garantiscono le funzioni cellulari:
- OMEOSTASI: mantenimento condizioni necessarie per la vita dell'organismo
- FUNZIONI DINAMICHE: crescita, differenziazione, divisione e morte
- COORDINAZIONE CON ALTRE CELLULE: funzioni multicellulari in cui sono coinvolti ormoni e neurotrasmettitori

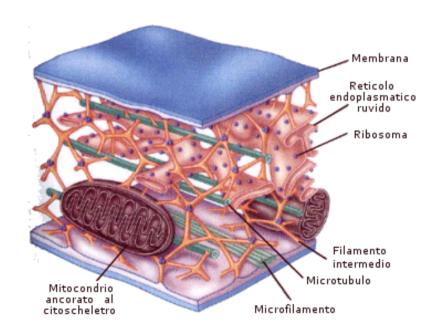
MEMBRANA CELLULARE

 Doppio strato di fosfolipidi con inserite proteine e glicoproteine che possono spostarsi liberamente nella membrana

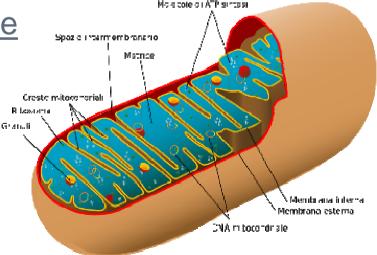

MEMBRANA CELLULARE

- Le proteine possono avere funzione di:
- Canali o pompe : per passaggio di sostanze
- Recettori: permettono alla cellula di rispondere ai segnali esterni, ossia la comunicazione cellulare e permettono l'adesione con altre cellule e con proteine extracellulari.

MEMBRANA CELLULARE E COMUNICAZIONE CELLULARE


- Ricevuto il messaggio i recettori sono coinvolti nella formazione di messaggeri intracellulari enzimi (proteine).
- Il messaggio passa <u>dall'esterno all'interno della cellula</u> che mette in atto tutta una serie di reazioni che porterà alla risposta al messaggio ossia alla produzione di sostanze (per la maggioranza proteine) necessarie all'ambiente esterno ossia al tessuto

MEMBRANA CELLULARE E COMUNICAZIONE CELLULARE

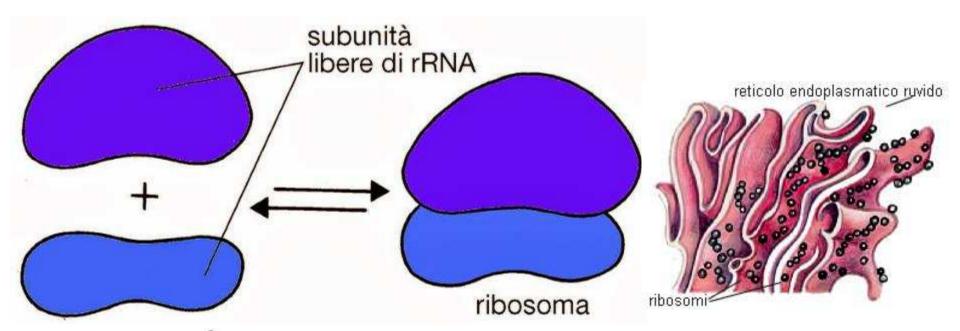

CITOPLASMA E CITOSCHELETRO

- Gel: acqua, Sali minerali, ioni, zuccheri
- Citoscheletro: proteine fibrose, ancorano gli organuli e coordina le funzioni biologiche: metabolismo, respirazione cellulare, movimenti cellulari, sintesi, fagocitosi, apoptosi

MITOCONDRIO

- Funzioni del mitocondrio:
- <u>Produzione di energia ATP</u> attraverso la *respirazione* cellulare: utilizza ossigeno e i derivati del metabolismo proteico, lipidico e glucidico
- Regola il ciclo cellulare
- Interviene nell'Apoptosi (morte cellulare programmata)
- Responsabile produzione di calore
- Interviene nella sintesi dell'eme

RIBOSOMA

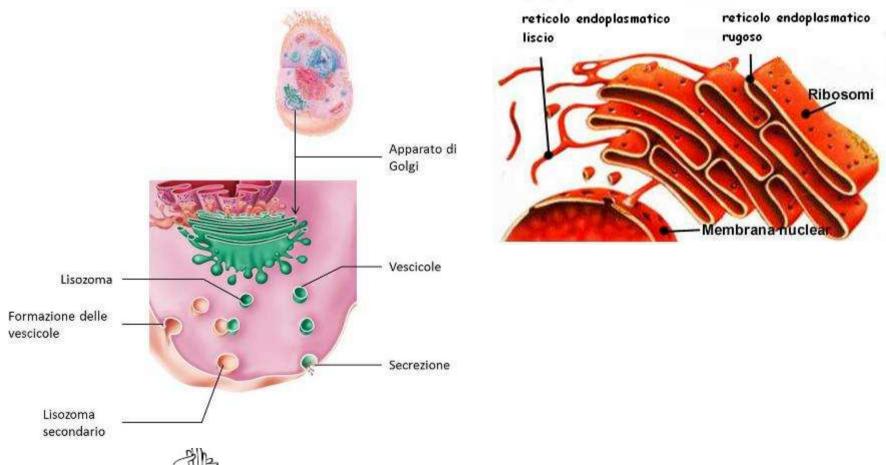

• È costituito da due sub-unità sintetizzate ed assemblate nel nucleolo. Ogni su-bunità è formata da RNA ribosomale e da proteine

Le due sub-unità cooperano assieme per TRADURRE un RNA messaggero (mRNA) in una catena polipeptidica (insieme di aminoacidi che forma la proteina) durante la sintesi proteica

I ribosomi possono essere liberi nel citoplasma o legati alla membrana del nucleo e del reticolo endoplasmatico rugoso.

RIBOSOMI: FUNZIONE

- Funzione: SINTESI PROTEICA
- Sintetizzano proteine leggendo le informazioni contenute nell'RNA messaggero (mRNA)


RETICOLO ENDOPLASMATICO

- Struttura: serie di membrane raccolte a formare delle sacche tra la membrana cellulare e quella nucleare.
- Vi sono due tipi di reticoli:
- *Rugoso*: membrane rivestite da ribosomi. Sintetizza proteine
- Liscio: membrane ribosomi, sintetizza lipidi
- Le proteine e i lipidi vengono portati fuori la cellula o utilizzati dentro la cellula
- Le proteine prima di essere portate fuori passano nell'apparato di Golgi che le organizza

APPARATO DI GOLGI

- Struttura: serie di membrane che racchiudono sacche
- **Funzione**: raccoglie, rielabora, seleziona, immagazzina ed esporta le secrezioni proteiche e lipidiche prodotte dai reticoli endoplasmatici

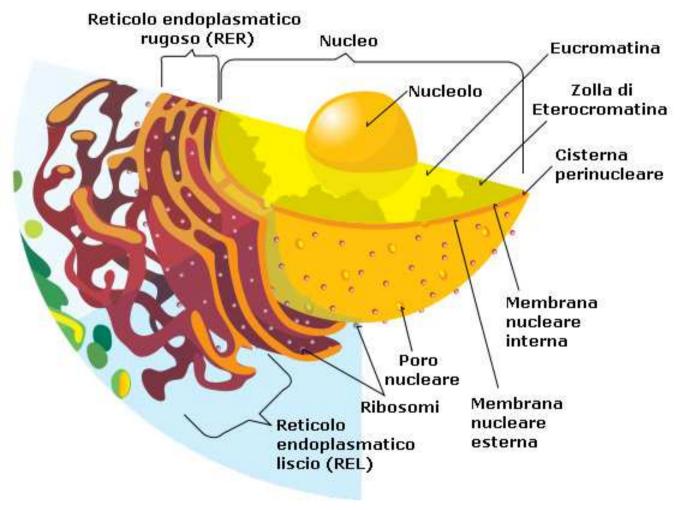
RAPPORTI RETICOLOENDOPLASMATICO E APPARATO DI GOLGI

LISOSOMA

• Struttura: Vescicole contenenti enzimi litici

• Funzione: degradano macromolecole entrate nella cellula ed anche quelle endocellulari. Distrugge organuli degenerati, elimina sostanze tossiche, effettua

l'Apoptosi.



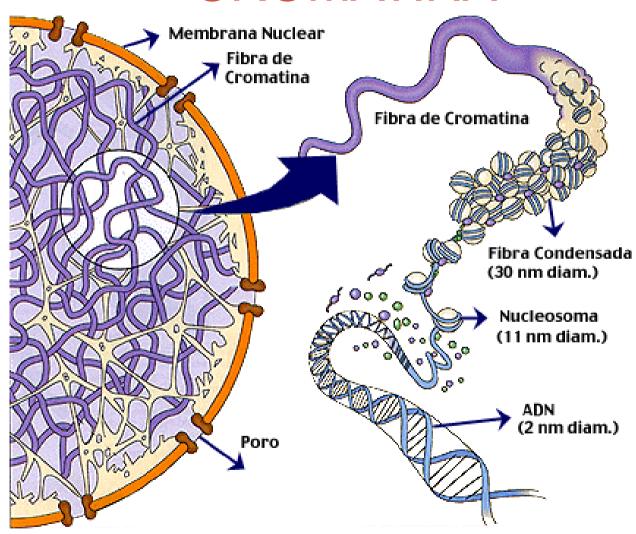
NUCLEO CELLULARE

- Centro di controllo che programma e coordina tutte le attività cellulari.
- Contiene gli acidi nucleici: DNA ed RNA
- Permette la duplicazione e la trascrizione del DNA
- Permette la maturazione dell'RNA
- È formato da tre componenti:
 - Membrana
 - Cromatina
 - Nucleolo

NUCLEO CELLULARE

NUCLEO: LA MEMBRANA NUCLEARE

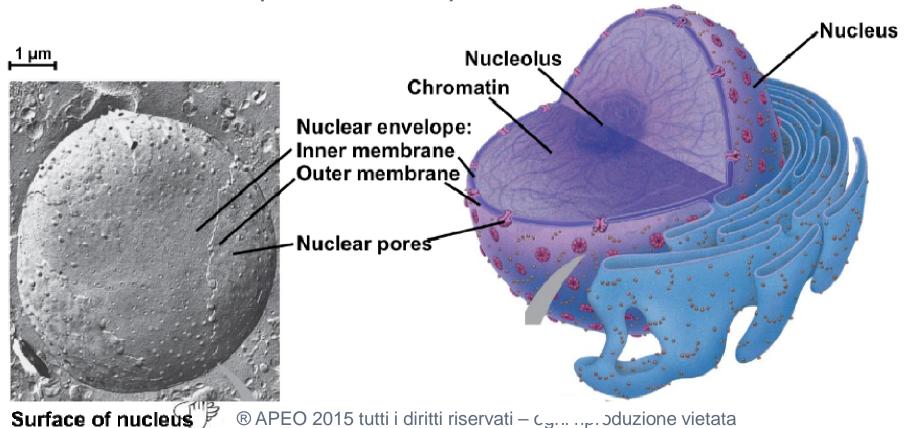
- Struttura: due membrane concentriche formate da fosfolipidi e proteine. Tra le membrane vi è una cisterna che continua con il reticolo endoplasmatico ruvido (RER). In alcuni punti detti pori le 2 membrane si uniscono, qui vi è il passaggio tra interno ed esterno del nucleo
- Delimita il nucleo, all'interno vi è il nucleolo e nello spazio tra membrana e nucleolo vi è il nucleoplasma in cui è contenuta la cromatina (DNA despiralizzato e proteine) o i cromosomi (DNA spiralizzato) a seconda della fase del ciclo cellulare


NUCLEO: LA CROMATINA

- Formata da **DNA** avvolto attorno a gruppi di proteine dette istoni (proteine basiche) e proteine non istoniche (acide), questa struttura si ripiega moltissime volte e forma una struttura molto complessa.
- Grazie a questi avvolgimenti e ripiegamenti il DNA, che è lungo circa 2 metri, riesce a stare nel nucleo della cellula grande solo 10-15 µm
- Nonostante la grande compattezza della cromatina, è anche molto dinamica in quanto rende accessibile il DNA per le proteine (enzimi) che determinano la replicazione, riparazione, ricombinazione

NUCLEO: LA CROMATINA

- L'organizzazione dinamica della cromatina influenza tutte le funzioni del genoma:
- Funzioni della CROMATINA:
- Impacchettamento del DNA
- Rafforza il DNA per far avvenire la mitosi
- Previene i danni al DNA
- Controlla la replicazione e l'espressione del gene


CROMATINA

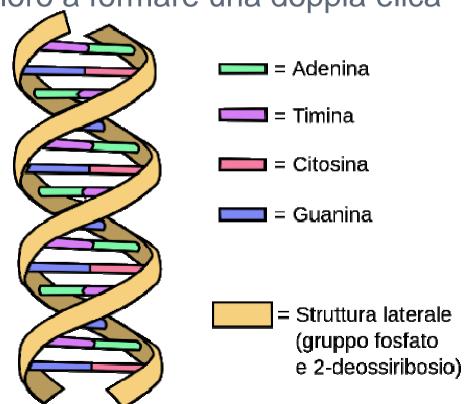
NUCLEO – IL NUCLEOLO

 Zona all'interno del nucleo, ricca di DNA, RNA e proteine.
 Vi avviene la sintesi di RNA ribosomiale (rRNA) è fondamentale per la sintesi proteica

4. DNA o ACIDO DESOSSIRIBONUCLEICO

- E' l'acido nucleico che contiene tutte le informazioni per la sintesi di RNA e proteine
- È un polimero organico composto da unità ripetute dette nucleotidi.
- I nucleotidi sono composti da:
 - Gruppo fosfato
 - Desossiribosio (zucchero pentoso)
 - Base azotata

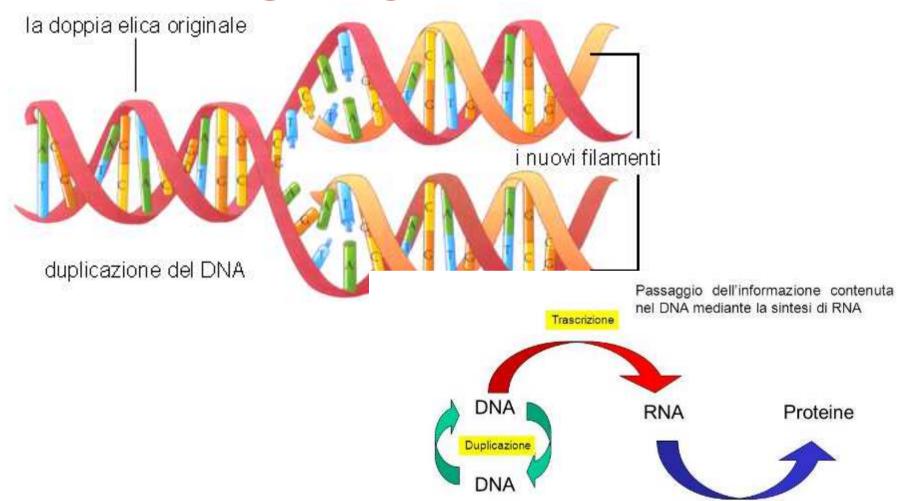
Le basi azotate che possono essere presenti singolarmente (una sola per ogni nucleotide) sono 5:


Adenina, Guanina, Citosina, Timina (AGCT)

STRUTTURA DEL DNA

 Formato da due catene polinucleotidiche (AGCT) antiparallele spiralizzate

• Le catene s'intrecciano tra loro a formare una doppia elica



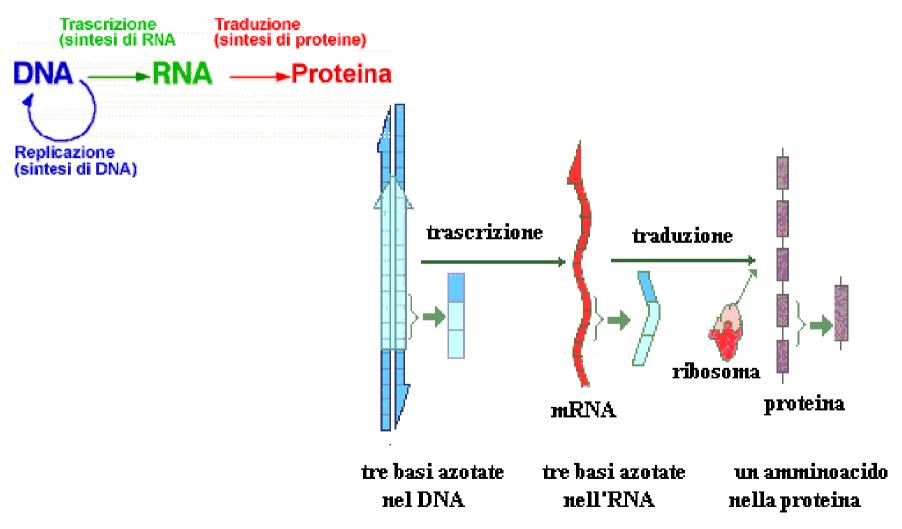
STRUTTURA DEL DNA

- Ogni nucleotide è formato da una parte laterale formata da zucchero (desossiribosio) e dal fosfato, allo zucchero è legata la base azotata.
- Nella doppia elica 2 catene di nucleotidi si fronteggiano e la base azotata di una catena forma un legame con la base azotate del filamento opposto. Questi legami stabilizzano il DNA
- I legami tra le basi sono: Adenina –Timina (AT) e Guanina Citosina (GC)

FUNZIONE DEL DNA

Costruzione della catena polipeptidica

Traduzione

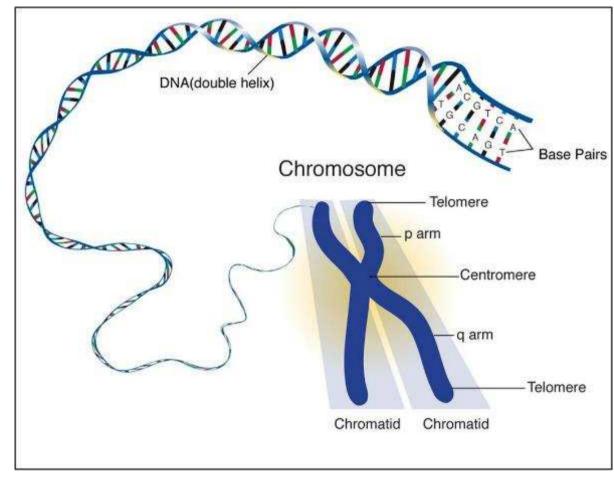

FUNZIONE DEL DNA

• L'ordine e la disposizione dei nucleotidi costituisce l'informazione genetica, che è tradotta con il codice genetico negli aminoacidi corrispondenti. La sequenza aminoacidica prodotta, detta polipeptide forma le proteine che formano e strutturano l'intero organismo

DNA e SINTESI PROTEICA

- il DNA codifica per una proteina ossia dice di quali e quanti aminoacidi deve essere formata la proteina.
- DNA trascrive sull'RNA (trasferisce l'informazione genetica sull'RNA e da questo all'mRNA (RNA messaggero). Questo è lo stampo del DNA
- L'mRNA entra nel citoplasma, caricato sui ribosomi e viene tradotto, ossia viene letto il messaggio del DNA, che indica gli aminoacidi da legare nella catena che formerà la proteina.

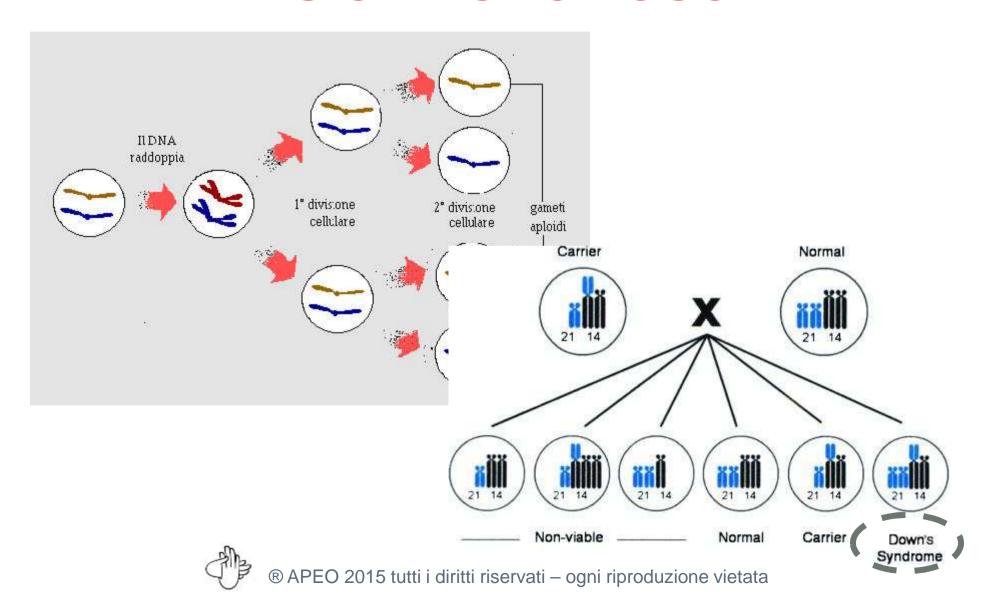
DNA e SINTESI PROTEICA



CROMOSOMI

• Si formano durante la mitosi per condensazione della

cromatina

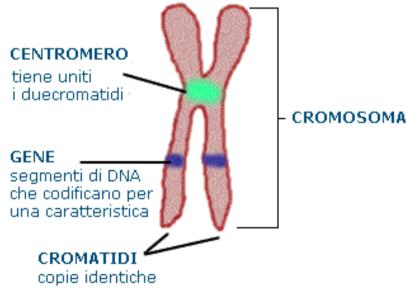

CROMOSOMI

- Hanno forma ad X e sono costituiti da due cromatidi.
- Nella divisione cellulare vanno uno in una cellula figlia e uno nell'altra
- Ogni cellula sintetizza DNA copiandolo dal cromatide
- L'estremità del cromosoma è detta TELOMERO, non codifica per proteine ma protegge il cromosoma.
 Impedisce che la mutazione di un cromosoma intacchi gli altri.

MUTAZIONI CROMOSOMICHE

- La Mutazione è l'alterazione della sequenza nucleotidica che porta ad un'alterazione delle proteine con conseguente patologia
- Le mutazioni possono essere:
 - Numero dei cromosomi (sindrome di Down 47 cromosomi)
 - Della struttura (rottura, ripiegamento)

DIVISIONE CROMOSOMI



GENE E GENOMA

- È l'unità ereditaria e consiste in una sequenza di DNA che ha le informazioni per produrre una proteina
- Sono contenuti nei cromosomi
- Dirigono lo sviluppo fisico e comportamentale

L'unione di tutti i geni forma il GENOMA che si trova in

ciascuna cellula

5. RNA O ACIDO RIBONUCLEICO

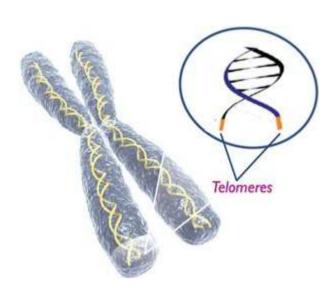
- Simile al DNA, formata da catena polinucleotidica
- Differisce dal DNA per:
 - Lo zucchero (ribosio)
 - Una base azotata: uracile al posto di timina
 - Un unico filamento
- RNA viene sintetizzato dalla trascrizione del DNA
- Tipi di RNA:
 - mRNA (messaggero)
 - rRNA (ribosomale)
 - tRNA (transfert)

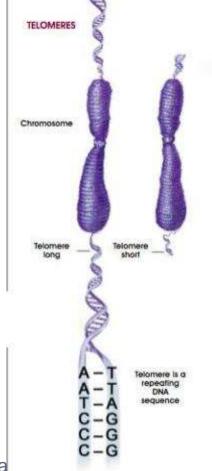
6. IL CICLO CELLULARE

- È il processo geneticamente controllato formato da eventi coordinati e dipendenti tra loro, ciò determina la corretta proliferazione cellulare.
- Il Ciclo Cellulare è **controllato** da eventi molecolari ordinati e direzionali (a cascata)

IL CICLO CELLULARE

- M = MITOSI
- G1 = Sintesi proteica
- S = Sintesi di DNA, duplicazione del genoma
- G2 = Sintesi proteica
- Per evitare che avvengano errori vi sono punti di controllo nei passaggi: G1/S e S/G2
- G0 stato quiescente (neurone e cellula muscolare)
- Cellule danneggiate o invecchiate non si duplicano più.


IL CICLO CELLULARE


- Proliferazione e morte cellulare programmata (APOPTOSI) devono essere in equilibrio. Il non equilibrio è MALATTIA
- Le cellule possono dividersi per un numero LIMITATO di volte (60/70 volte) dopo entrano in senescenza.
- I **Telomeri** sono i *contatori* della divisione e si accorciano ad ogni divisione
- Le cellule germinali hanno le TELOMERASI, enzima che RIALLUNGA i Telomeri

IL CICLO CELLULARE

• Le cellule tumorali perdono queste caratteristiche e si

dividono in modo ILLIMITATO

SISTEMA DI CONTROLLO DEL CICLO CELLULARE

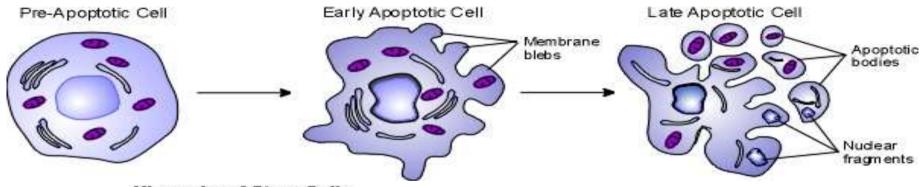
- Serie di proteine: Chinasi ciclina- dipendenti che regolano l'entrata nelle varie fasi del ciclo cellulare
- Intervengono in tre punti:
 - Fine di G1
 - Fine di G2
 - Nella mitosi fra metafase e anafase
- Questi sistemi di controllo sono fondamentali e vengono elusi dalla cellula tumorale

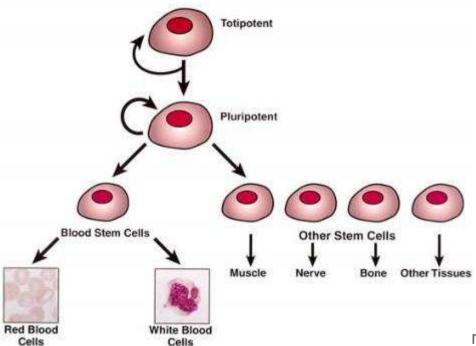
FATTORI DI CRESCITA CELLULARE

- La differenza fra una cellula sana e una neoplastica è la crescita incontrollata
- I fattori di crescita (*Growth Factor*) sono proteine che stimolano la proliferazione. Molecole utilizzate nella comunicazione cellulare (citochine, ormoni) che si legano i recettori di membrana
- I RECETTORI di MEMBRANA sono delle proteine
- Il legame tra fattori di crescita (proteine) e recettori (proteine) da il via alle reazioni intracellulari dettate dal fattore di crescita ossia la moltiplicazione cellulare

FATTORI DI CRESCITA CELLULARE

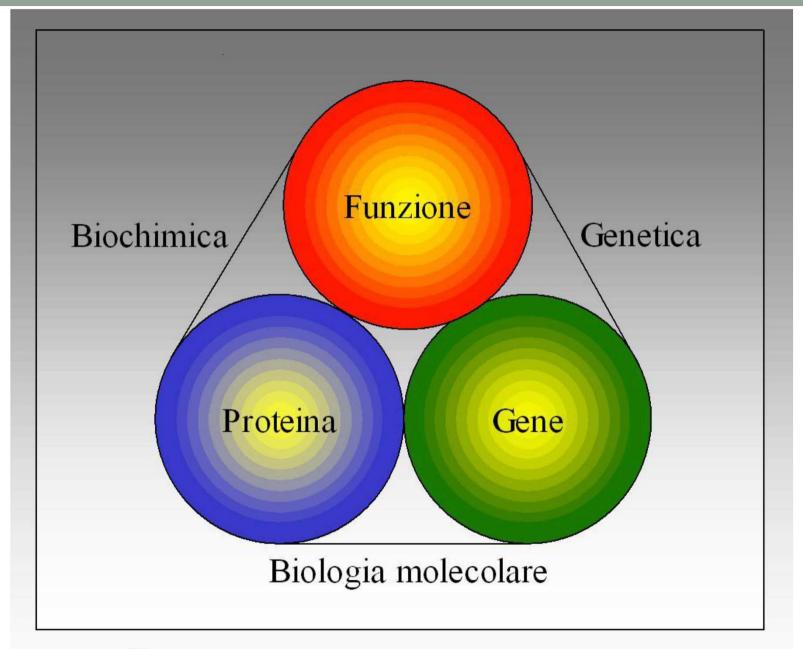
FUNZIONI


- Spingono la cellula ad entrare dalla fase G0 (diquescienza) alla fase G1 (di crescita)
- >Inizio mitosi
- ➤ Sopravvivenza cellulare
- >Migrazione cellulare
- > Differenziamento cellulare
- La proliferazione cellulare deve avvenire contemporaneamente al differenziamento e alla maturazione. La separazione di questi processi è all'origine della cellula tumorale


FATTORI DI CRESCITA CELLULARE

- I più importanti:
- Epidermal Growth Factor (EGF): fattore di crescita dell'epidermide. Si lega al recettore EGFR detto ERB-B1
- Fattore di crescita dell'endotelio vascolare (VEGF) infiammazione, angiogenesi
- Fattori di crescita trasformanti (TGF-α e TGF –β) il TGF- α
 è presente in numero elevatissimo nelle cellule tumorali

APOPTOSI



Hierarchy of Stem Cells

8. BIOCHIMICA E BIOLOGIA MOLECOLARE

- la Biochimica cellulare studia:
- -le reazioni chimiche che danno origine alla vita
- -Le trasformazioni dei componenti delle cellule: proteine, carboidrati, lipidi, acidi nucleici
- La Biologia molecolare studia:
- -I meccanismi molecolari in particolare la replicazione, trascrizione e traduzione del DNA e le interazioni tra DNA e proteine
- Il confine tra biochimica e biologia è molto esiguo visto che la traduzione del DNA è la sintesi proteica

PROTEINE

Sono macromolecole biologiche formate da una o più catene di aminoacidi, catene polipeptidiche con più di 90-100 aminoacidi

- Possono essere:
- Enzimi: catalizzano le reazioni biochimiche
- Strutturali e meccaniche: collagene, actina, miosina
- Mediatori: ormoni
- Recettori(risposta immunitaria, adesione cellulare, ciclo cellulare

PROTEINE

- Si differenziano per la sequenza degli aminoacidi che è scritta nella sequenza dei nucleotidi dei geni.
- Il codice genetico specifica per 20 aminoacidi
- La sequenza degli aminoacidi determina la forma e la funzione delle proteine
- Una mutazione del DNA modifica la sequenza aminoacidicae quindi la forma e la funzione delle proteine
- Regolano l'espressione dei geni, la duplicazione, trascrizione e duplicazione del DNA

SINTESI PROTEICA

- Le proteine si formano unendo in polipeptidiche gli aminoacidi scelti seguendo le indicazioni codificate nei geni
- La sequenza degli aminoacidi deriva dalla sequenza nucleotidica del gene
- Il codice genetico è formato da triplette di nucleotidi dette codoni. La combinazione di 3 nucleotidi designa un aminoacido: il codone AUG (adenina-uracile-guanina) è il codice per l'aminoacido metionina.

Polipeptide DNA tRNA scarico mRNA Ribosoma tRNA carico

Trascrizione

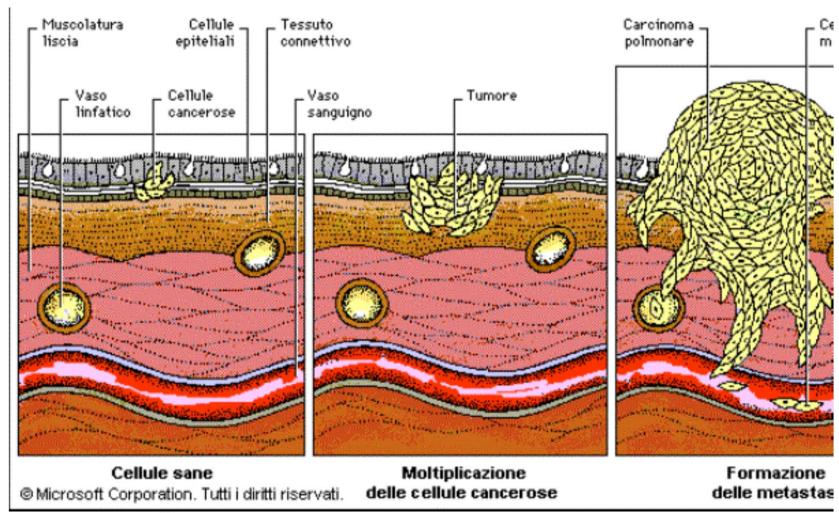
Traduzione

SINTESI PROTEICA

- All'interno del nucleo, i geni vengono prima trascritti in pre-mRNA poi in mRNA(RNA messaggero)
- L'Mrna viene traslocato nel citoplasma, nel ribosoma dove avviene la traduzione del messaggio del DNA. Vengono lette 3 nucleotidi (codone) per volta, viene preso il corrispondente tRNA che porta l'aminoacido corrispondente al codone letto. Si legano gli aminoacidi con legami peptidici
- DNA → RNA → PROTEINE

LE PROTEINE

- Le proteine hanno nella loro struttura dei siti di legame, ligandi, che permettono l'interazione con altre molecole dette ligandi. (ormoni, sistema immunitario)
- Questi legami sono alla base delle interazioni cellulari, del metabolismo e della comunicazione cellulare, della vita dell'intero organismo.
- Mutazioni del DNA portano mutazioni del sito di legame quindi non avviene il legame, ad es: antigene-anticorpo si ha malfunzionamento del sistema immunitario; per gli enzimi-substrato non avvengono le reazioni


ONCOLOGIA MOLECOLARE

- Studia le mutazioni dei geni e le nuove caratteristiche che questi geni mutati causano nella cellula
- L'oncologia molecolare ha portato alla conoscenza dei meccanismi molecolari alla base della crescita, sviluppo e diffusione del cancro ed ha permesso di studiare terapie mirate che agiscono in modo selettivo sui processi cellulari
- Terapie a bersaglio molecolare

CARCINOGENESI

- È la formazione del cancro, la trasformazione di una cellula normale in una cellula cancerosa.
- La cellula tumorale è una cellula con mutazioni strutturali e funzionali, è completamente diversa da quella sana.
- Nel DNA vi sono mutazioni dei geni che controllano divisione, morte e riparazione cellulare
- La cellula perde l'equilibrio tra proliferazione, differenziazione e morte programmata, ciò porta ad una divisione cellulare incontrollata e al cancro

CARCINOGENESI

CARATTERISTICHE DELLA CELLULA TUMORALE

- a) Proliferazione indipendente dai segnali di crescita
- b) Insensibilità ai fattori che bloccano la crescita cellulare
- c) Evitare la morte programmata (apoptosi)
- d) Proliferare in maniera illimitata
- e) Promuovere l'angiogenesi
- f) Promuovere l'invasione dei tessuti
- g) Riprogrammare il metabolismo energetico
- h) Sfuggire al sistema immunitario
- i) Infiammazione
- j) Instabilità genomica

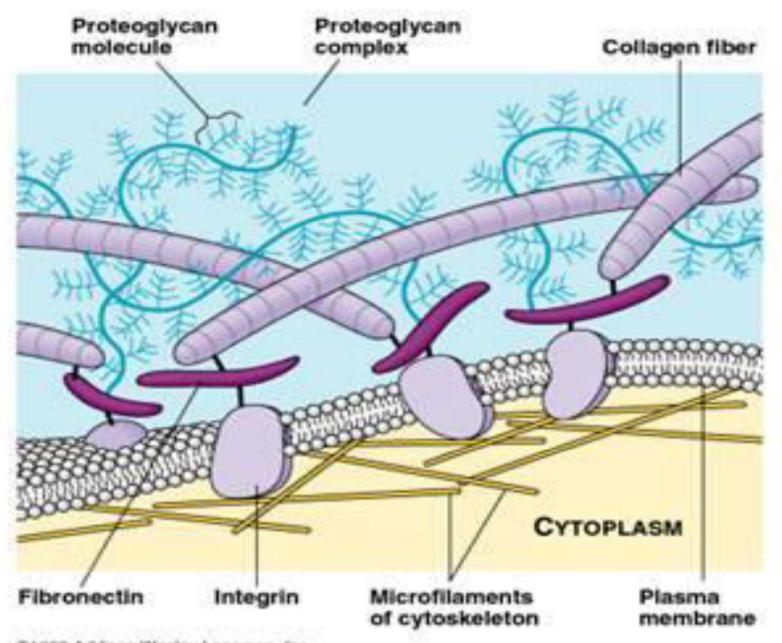
a) PROLIFERAZIONE INDIPENDENTE DAI SEGNALI DI CRESCITA

- La cellula tumorale utilizza strategie per crescere indipendenti da ciò che l'ambiente esterno le dice di fare.
- La cellula sana obbedisce a stimoli esterni che spingono o bloccano la crescita e la proliferazione. Questi segnali sono in equilibrio
- I segnali proliferativi possono essere:
- -fattori di crescita esterni
- -molecole della matrice extracellulare
- -molecole che permettono l'adesione cellulare
- I segnali vengono recepiti dai recettori attraverso i siti di legame

a) PROLIFERAZIONE INDIPENDENTE DAI SEGNALI DI CRESCITA

- La cellula tumorale è in grado di proliferare anche in assenza dei segnali di crescita, utilizza diverse strategie:
- Autofattori di crescita; producono da sole fattori di crescita
- Aumentano il numero di recettori presenti sulla membrana
- Variano il tipo di recettori presenti sulla membrana
- Rende il recettore sempre attivo
- Stimola le cellule vicine a produrre fattori di crescita

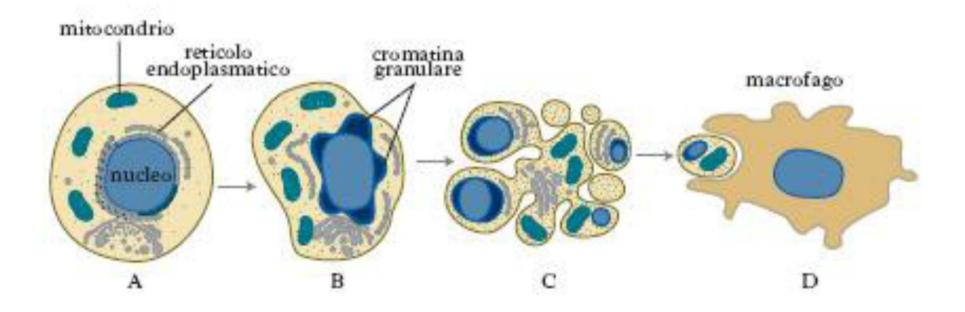
b) INSENSIBILITA' AI FATTORI CHE BLOCCANO LA CRESCITA


- Le cellule tumorali crescono in modo indipendente da quello che l'ambiente esterno le ordina di fare
- Normalmente se le condizioni esterne non sono ideali la cellula blocca il ciclo cellulare e rimane in *G0 fase quiescente*(cellula viva ma non lavora), se torna la normalità la cellula riprende. Se il blocco rimane la cellula entra nel *differenziamento terminale*, la cellula non si divide più ma svolge le sue funzioni (es cellula nervosa e muscolare); oppure può entrare in *senescenza* oppure in *apoptosi*

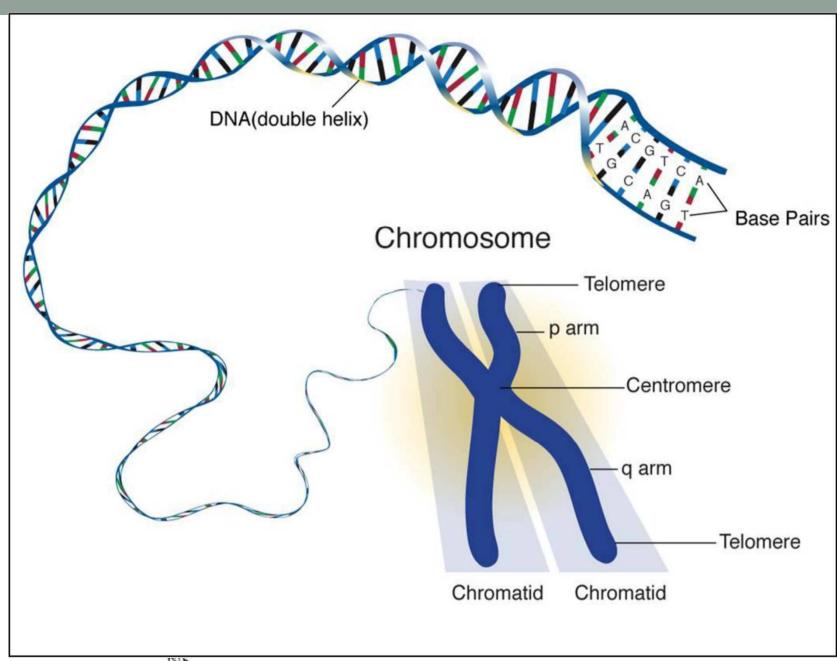
b) INSENSIBILITA' AI FATTORI CHE BLOCCANO LA CRESCITA

- Le cellule tumorali sono insensibili ai segnali (fattori) che bloccano la crescita. Mettono in atto:
- Modificano i recettori
- Mutano le molecole che portano i segnali al nucleotide
- Mutano le proteine che regolano il passaggio nelle fasi del ciclo cellulare

c) EVITARE L'APOPTOSI


- L'apoptosi garantisce l'omeostasi dei tessuti ed elimina cellule vecchie o danneggiate per permetterne la nascita di nuove
- È causata da segnali di stress (anomalie) intra ed extracellulari. I segnali vengono raccolti dai sensori (molecole) e li trasmettono agli effettori.
- Stress extracellulari: anomalie del tessuto: mancata adesione cellula-cellula, mancata adesione cellulamatrice extracellulare
- stress intracellulari: danni al DNA, riduzione O2, riduzione segnali proliferativi

©1999 Addison Wesley Longman, Inc.


c) EVITARE L'APOPTOSI

- Fasi del processo:
- 1. danno mitocondriale
- 2. liberazione di molecole che danneggiano gli organuli
- 3. fagocitosi della cellula da parte dei macrofagi
- L'apoptosi avviene in un tempo tra i 30 e i 120 secondi
- La cellula tumorale blocca l'apoptosi modificando i sensori degli stress

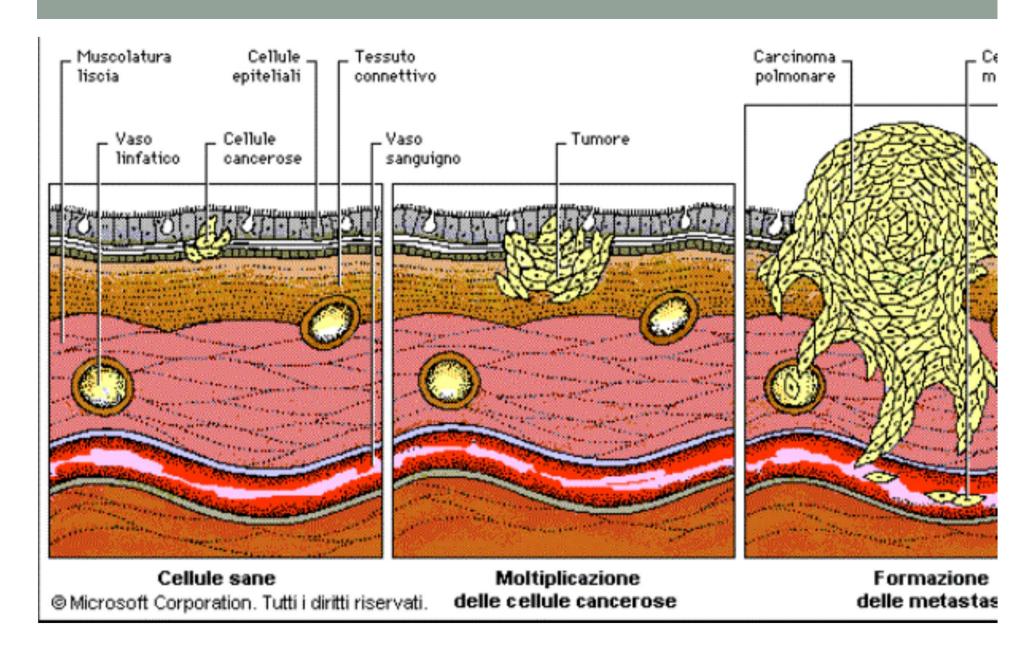
d) PROLIFERARE IN MODO ILLIMITATO

- Le cellule tumorali proliferano in modo illimitato (cellula sana 60-70 volte) e non entrano in senescenza
- Le cellule tumorali tengono alto il numero delle telomerasi le proteine enzimatiche che allungano i telomeri. I telomeri non si accorciano e le cellule rimangono sempre giovani
- La cellula tumorale non invecchia mai!

e) PROMUOVERE L'ANGIOGENESI

- Le cellule tumorali crescono tantissimo ed in tempi brevi per cui hanno bisogno di molti nutrimenti quindi mettono in atto meccanismi per favorire la crescita di nuovi vasi sanguigni ossia l'ANGIOGENESI
- Le cellule tumorali promuovono l'angiogenesi alterando l'equilibrio tra fattori che la favoriscono e fattori che la bloccano

f) PROMUOVERE LA MIGRAZIONE E L'INVASIONE DEI TESSUTI


- Si attua la *cascata d'invasione e metastasi* che avviene in passaggi:
- 1. invasione locale
- 2. ingresso nei vasi (attraversano la parete dei vasi sanguigni
- 3. escono dai vasi in tessuti lontani dall'origine
- microcolonizzazione e metastasi
- 5. neoangiogenesie formazione di masse metastatiche

f) PROMUOVERE LA MIGRAZIONE E L'INVASIONE DEI TESSUTI

- Strategie della cellula tumorale per aumentare la motilità e la capacità d'invasione
- 1. attivano il processo di transizione epitelialemesenchimale (EMT): perdono le giunzioni cellulacellula, poi si allungano per agevolare movimenti e rilasciano enzimi litici che degradano la matrice extracellulare creando spazio alla cellula tumorale
- 2. invasione collettiva: nudulidi cellule cancerogene si spostano in massa ed invadono il tessuto
- movimento ameboide: le cellule si spostano nella matrice senza degradarla

g) RIPROGRAMMARE IL METABOLISMO ENERGETICO

- Normalmente la cellula ricava energia ATP dal glucosio con due vie: aerobia 1 glucosio 36 ATP (nel mitocondrio).
 Anaerobia 1 glucosio 2 ATP (non avviene nel mitocondrio) produce lattato finale
- Le cellule tumorali anche in presenza di ossigeno utilizzano la via anaerobia ed ossidano il lattato completamente in energia.
- Purtroppo non si conoscono i meccanismi molecolari della riprogrammazione del metabolismo energetico e quindi è difficile trovare strategie per bloccarlo

h) SFUGGIRE AL SISTEMA IMMUNITARIO

Funzioni del sistema immunitario

1. Difesa dell'organismo da agenti esterni grazie a macrofagi e linfociti B. Entrambe riconoscono il patogeno lo inglobano degradano ed espongono sulla membrana parti del patogeno. Linfociti B e macrofagi attivano i linfociti Thel perchè producono citochine che stimolano i linfociti B a trasformarsi in plasmacellule e a produrre anticorpi specifici che riconosceranno il patogeno in futuro. Le citochine attivano le cellule T citotossiche che riconoscono ed eliminano le cellule infettate dal patogeno, fermando la propagazione della malattia.

h) SFUGGIRE AL SISTEMA IMMUNITARIO

2. Omeostasi tessutale del sistema immunitario che elimina i detriti cellulari di tutte le cellule che l'organismo percepisce come anomale (cellule con DNA danneggiato). La cellula con danno al DNA espone sulla membrana proteine che segnalano l'anomali i linfociti NaturlKiller le riconoscono e le uccidono. Prima che si accumulino danni

h) SFUGGIRE AL SISTEMA IMMUNITARIO

- Le cellule tumorali sfuggono ai controlli del sistema immunitario con due meccanismi:
- non espongono sulla superficie le proteine che segnalano ai Natural killer
- 2. rilasciano fattori che impediscono al sistema immunitario di avvicinarsi per distruggerle
- Le cellule tumorali continuano ad accumulare danni e la trasformazione neoplastica non si arresta
- Non si conoscono i meccanismi molecolari che permettono tutto ciò quindi è difficile trovare terapie

i) INFIAMMAZIONE

- L'infiammazione è un processo fisiologico che l'organismo mette in atto per difendersi, ma processi prolungati d'infiammazione portano le cellule a mutare e quindi verso una trasformazione neoplastica
- Durante il processo infiammatorio le cellule del sistema immunitario producono sostanze per permettere la rigenerazione dei tessuti

i) INFIAMMAZIONE

- Le sostanze prodotte dal sistema immunitario sono:
- -fattori di crescita
- -fattori che stimolano l'angiogenesi
- -enzimi litici che modificano la matrice extracellulare
- -fattori che stimolano la migrazione epiteliale mesenchimale
- -inoltre le cellule del sistema immunitario producono radicali liberi che danneggiano il DNA
- Tutte queste azioni perpetuate nel tempo sostengono tutti i processi che sono alla base del tumore (proliferazione, neoangigenesi, migrazione)

j) INSTABILITÀ GENOMICA

- Il DNA indica alle cellule il programma che devono svolgere
- Agenti endogeni ed esogeni producono mutazioni nel DNA che modificano il suo messaggio
- La cellula ha dei sistemi di controllo i guardiani
 molecolari che sono proteine capaci di riconoscere il
 danno e di ripararlo. Ciò garantisce l'integrità del genoma

j) INSTABILITÀ GENOMICA

- Nelle cellule tumorali i guardiani molecolari non riconoscono più il danno e non lo riparano.
- Le cellule accumulano mutazioni e si formano cellule diverse all'interno dei tessuti che proliferano di più, migrano di più, e promuovono l'angiogenesi.
- L'accumulo di mutazioni provoca l'instabilità genomica e favorisce la nascita di cellule modificate

8. LA RICERCA PER SCONFIGGERE IL CANCRO

- La conoscenza dei meccanismi biologici che stanno alla base della cellula tumorale permetterà sempre di più nuovi metodi diagnostici e nuove terapie. Oggi alla chemioterapia, alla terapia immunosoppressiva ed a quella ormonale si affianca la TarghetTerapy che ha farmaci molecolari mirati, targhettizzati, alle molecole ed meccanismi molecolari cellulari
- Farmaci che hanno come bersaglio EGFR ossia il recettore dell'EGF (epidermalgrowthfactor)
- Farmaci che contrastano la neoangiogenesi contrastando il VEGF (fattore di crescita vascolare)

PERCHÈ LA TOSSICITÀ CUTANEA

- Tutti i farmaci oncologici ed in particolare gli ultimi e quelli nel prossimo futuro, hanno ed avranno come bersaglio le nostre cellule ed i loro meccanismi molecolari quindi hanno elevate tossicità
- Nel futuro sicuramente i farmaci saranno sempre più mirati all'EGFR e quindi avranno un'elevatissima tossicità cutanea, che già oggi è al 100%

IL RUOLO DELL'ESTETICA ONCOLOGICA

 Nuove terapie e nuove tossicità cutanee in una malattia che dura per periodi lunghi, dove è importante mantenere alla persona in terapia oncologica una qualità di vita e mantenere un benessere cutaneo per poter proseguire con successo le terapie oncologiche sia farmacologiche che radioterapiche